

LOW-ORDER ACOUSTIC SIMULATION METHODS FOR WIND TURBINE NOISE zEPHYR Marie Skłodowska-Curie project: towards a more efficient exploitation of on-shore and urban wind energy resources Andrea P. C. Bresciani*, Sophie Le Bras, Julien Maillard, Leandro D. de Santana

Anurea F. C. Diesciani, Sopine Le Dias, Junen Manaiu, Leanuro D. de Saman

* andrea.bresciani@siemens.com, Siemens Industry Software NV

Fig. 1 from [1].

The deployment of green Aeolian energy in cities is an important component of future environmentallyfriendly Smart Cities. The societal acceptance of urban wind parks will be strongly affected by their visual and **acoustic** impact.

Fig. 2: Relevant phenomena for wind turbine noise propagation.

Fast wind turbine noise prediction in a complex urban environment is a challenging problem because of the wide variety of physical phenomena that need be considered. The most relevant ones are highlighted in Fig. 2. In order to account for them in the numerical simulations while keeping the computational cost reasonable, the development of loworder aeroacoustic models is of interest, especially for sensitivity analysis at the design stage of wind turbines.

OBJECTIVES

- Near field source modeling
- Robust and accurate method for trailing edge noise predictionAutomation of the workflow

Amiet's

model

Reynolds-Averaged Navier-Stokes simulations to compute mean flow properties

Noise propagation in urban environments

• Analysis of the impact of terrain topology and atmospheric effects on noise emissions

Wind turbine noise auralization

• Audio synthesis to investigate the acoustic annoyance for societal acceptance

Analytical model [2] to compute the trailing edge noise

Harmonoise model [3] to simulate the far-field noise propagation in a complex urban environment

[1] https://new.siemens.com/global/en/markets/wind.html

[2] R.K. Amiet (1976). Noise due to turbulent flow past a trailing edge. Journal of Sound and Vibration, Volume 47, Issue 3.

[3] E. Salomons, D. van Maercke, J. Defrance, F. de Roo (2011). The Harmonoise sound propagation model. Acta Acustica united with Acustica, Volume 97.

The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 860101

